Seea solution process below: Explanation: To find the x-intercept: Substitute \displaystyle{0} for \displaystyle{y} and solve for \displaystyle{x} : \displaystyle\frac{{1}}{{2}}{x}+{2}{y}=-{2} w=1/3(x+y-z)
Theparametric equations x = x1 + (x2 - X1), y = y1 + (Y2 - Y1)t where Osts i describe the line segment that joins the points P1(X1,Yı) and P2(X2, Y2). Use a graphing device to draw the triangle with vertices A(1, 1), B(4,4), C(1, 6). Find the parametrization, including endpoints, and sketch to check. (Enter your answers as a comma-separated
Question The parametric equations x = X1 + (x2 - X1)t, y = Y1 + (y2 - Y1)t where Osts i describe the line segment that joins the points P1(X1, Y1) and P2(x2, Y2). Draw the triangle with vertices A(1, 1), B(5, 4), C(1, 6). Find the parametrization, including endpoints, and sketch to check. (Enter your answers as a comma-separated list of
Justifyyour answers. Transcribed Image Text: (X1, Y1, Z1) + (x2, Y2, Z2) = (x1 + X2 + 6, y1 + Y2 + 6, Z1 + Z2 + 6) (p). c (x, y, z) = (cx + 6c - 6, cy + 6c - 6, cz + 6c - 6) The set is a vector space. O The set is not a vector space because the additive identity property is not satisfied.
过点Ax1,y1)和B(x2,y2)两点的直线方程是() - ——[选项] A. y−y1 y2−y1= x−x1 x2−x1 B. y−y1 x−x1= y2−y1 x2−x1 C. (y2-y1)(x-x1)-(x2-x1)(y-y1)=0 D. (x2-x1)(x-x1)-(y2-y1)(y-y1)=0 下列叙述中正确的是() - ——[选项] A. 点斜式y-y1=k(x-x1)适用于过点(x1,y1)且不垂直x轴的任何直线 B. y−y1 x−x1=k表示过点P1(x1,y1)且斜率为k的直线方程
Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd Hỗ Trợ Nợ Xấu. I am working on a project for my seventh grade math class and I was wondering how would I calculate the Y-Intercept of a graph with two points knowing the position of the two points. Here is what I have Option Explicit Dim X1, X2, Y1, Y2, Y, X, S X1=InputBox"Enter X1" Y1=InputBox"Enter Y1" X2=InputBox"Enter X2" Y2=InputBox"Enter Y2" X=X2-X1 Y=Y2-Y1 S=Y/X MsgBox"The slope of [" & X1 & "," & Y1 & "] and [" & X2 & "," & Y2 & "] is " & S MsgBox"Equation " & Y2 & "-" & Y1 & " / " & X2 & "-" & X1 & " = " & S I don't know how to compute X1, Y1 and X2, Y2 into the Y-Intercept. asked Nov 13, 2013 at 1701 1 First step is to find the slope. Which it looks like you're doing with S = Y/X. After that it is easy y-intercept = Y1 - S*X1 answered Nov 13, 2013 at 1707 Choppin BroccoliChoppin Broccoli3,0482 gold badges20 silver badges28 bronze badges The line passing through a point X1,Y1 with slope S is yx = Y1 + S*x-X1 The line passing through two points X1,Y1 and X2,Y2 is yx = Y1 + Y2-Y1*x-X1/X2-X1 The line crosses the y-axis at Y0 = X2*Y1-X1*Y2/X2-X1 Alternate form of the line on the xy plane is X2-X1*y - Y2-Y1*x = X2*Y1-X1*Y2 = constant answered Nov 13, 2013 at 1855 John AlexiouJohn gold badges76 silver badges133 bronze badges Please try this p1 = InputBox"Enter X1,Y1","Y Intercept" p2 = InputBox"Enter X2,Y2","Y Intercept" x1 = Leftp1,InStrp1,"," - 1 y1 = Replacep1,x1 & ",","" x2 = Leftp2,InStrp2,"," - 1 y2 = Replacep2,x2 & ",","" MsgBox "Y Intercept = " & y2 - y2-y1/x2-x1 * x2 answered Oct 6, 2016 at 345
Prévia do material em textoCurso de Álgebra Linear Abrangência Graduação em Engenharia e Matemática - Professor Responsável Anastassios H. Kambourakis Exercícios de Álgebra Linear - Lista 02 – Espaços vetoriais 1. No conjunto V={x , y / x , y ∈IR}. Definimos as operações de * Adição x1 , y1 + x2 , y2 = x1 + x2 , 0; *Multiplicação kx , y = kx , ky, ∀ k ∈IR. Verificar se, nessas condições, V é um espaço Vetorial. Dizemos que um conjunto V é um espaço vetorial quando neste conjunto vale as oito propriedades, a de adição e a de multiplicação. Adição A1 u+v=v+u x1,y1+x2,y2 = x2,y2+ x1,y1 x1+x2 , 0 = x2+x1 , 0, Vale A1 A2 u+v+w = u+v+w x1,y1+[x2,y2+x3,y3] = [x1,y1+x2,y2]+x3,y3 x1,y1+[x2+x3 , 0] = x1+x2 , 0+x3 , y3 x1+x2+x3 , 0 = x1+x2+x3 , 0, Vale A2 A3 u+0 = u x1,y1+0,0 = x1,y1 x1+0,y1+0 = x1,y1 x1,0 = x1,y1 , não vale A3 A4 u+-u = 0 x1,y1+-x1,-y1 = 0,0 0,0=0,0, Vale A4 Multiplicação M1 λku = λku λ[kx1,y1] = λkx1,y1 λkx1,ky1 = λkx1, λky1 λkx1, λky1 = λkx1, λky1, Vale M1 M2 ku+v = ku+kv K[x1,y1+x2,y2] = kx1,y1+kx2,y2 K[x1+x2 , 0] = kx1,ky1+kx2,ky2 kx1+kx2 , 0 = kx1+kx2 , 0, Vale M2 M3 λ+ku = λu+ku λ+kx1,y1 = λx1,y1+kx1,y1 [λ+kx1,λ+ky1] = λx1, λy1+kx1,ky1 λx1+kx1,λy1+ky1 ≠ λx1+kx1,0, Não vale M3 M4 1u = u 1x1,y1 = x1,y1 x1,y1 = x1,y1 Vale M4 , Para ser um espaço vetorial, é necessário satisfazer as oito propriedades, e como não valem a A3 e M3, não é um espaço vetorial. 2. No conjunto dos pares ordenados de números reais , se definirmos a operação de adição como x1 , y1 + x2 , y2 = x1 + x2 , y1+ y2, e a operação de Multiplicação como kx , y = x , ky, o conjunto V assim definido não é um espaço quais das 8 propriedades não são válidas; Adição A1 u+v=v+u x1,y1+x2,y2 = x2,y2+ x1,y1 x1+x2 , y1+y2 = x2+x1 , y2+y1 , Vale A1 A2 u+v+w = u+v+w x1,y1+[x2,y2+x3,y3] = [x1,y1+x2,y2]+x3,y3 x1,y1+[x2+x3 , y2+y3] = x1+x2 , y1+y2+x3 , y3 x1+x2+x3 , y1+y2+y3 = x1+x2+x3 , y1+y2+y3, Vale A2 A3 u+0 = u x1,y1+0,0 = x1,y1 x1+0,y1+0 = x1,y1 x1,y1 = x1,y1, Vale A3 A4 u+-u = 0 x1,y1+-x1,-y1 = 0,0 0,0=0,0, Vale A4 Multiplicação M1 λku = λku λ[kx1,y1] = λkx1,y1 λx,ky1 = x, λky1 x, λky1 = x, λky1, Vale M1 M2 ku+v = ku+kv K[x1,y1+x2,y2] = kx1,y1+kx2,y2 K[x1+x2 , y1+y2] = x1,ky1+x2,ky2 x1+x2 , ky1+ky2 = x1+x2 , ky1+ky2, Vale M2 M3 λ+ku = λu+ku λ+kx1,y1 = λx1,y1+kx1,y1 [x1,λ+ky1] = x1, y1+x1,ky1 x1,λy1+ky1 ≠ 2x1, λy1+ ky1, Não vale M3 M4 1u = u 1x1,y1 = x1,y1 x1,y1 = x1,y1 , vale M4 Não é um Espaço Vetorial e a propriedade que não vale é a M3. 3. Considerando os Espaços Vetoriais U e V sobre IR, provar que o conjunto W=UxV={u,v / u ∈ U e v ∈ V} é um espaço vetorial em relação às operações; Adição u1 , v1 + u2 , v2 = u1 + u2 , v1 + v2 e Multiplicação ku ,v =ku ,kv. Adição A1 u+v=v+u u1,v1+u2,v2 = u2,v2+ u1,v1 u1+u2 , v1+v2 = u2+u1 , v2+v1 , Vale A1 A2 u+v+w = u+v+w u1,v1+[u2,v2+u3,v3] = [u1,v1+u2,v2]+u3,v3 u1,v1+[u2+u3 , v2+v3] = u1+u2 , v1+v2+u3 , v3 u1+u2+u3 , v1+v2+v3 = u1+u2+u3 , v1+v2+v3, Vale A2 A3 u+0 = u u1,v1+0,0 = u1,v1 u1+0,v1+0 = u1,v1 u1,v1 = u1,v1, Vale A3 A4 u+-u = 0 u1,v1+-u1,-v1 = 0,0 0,0=0,0, Vale A4 Multiplicação M1 λku = λku λ[ku1,v1] = λku1,v1 λku1,kv1 = λku1, λkv1 λku1, λkv1 = λku1, λkv1, Vale M1 M2 ku+v = ku+kv K[u1,v1+u2,v2] = ku1,v1+ku2,v2 K[u1+u2 , v1+v2] = ku1,kv1+ku2,kv2 ku1+ku2 , kv1+kv2 = ku1+ku2 , kv1+kv2, Vale M2 M3 λ+ku = λu+ku λ+ku1,v1 = λu1,v1+ku1,v1 [λ+ku1,λ+kv1] = λu1, λv1+ku1,kv1 λu1+ku1, λv1+kv1 = λu1+ku1, λv1+kv1, Não vale M3 M4 1u = u 1u1,v1 = u1,v1 u1,v1 = u1,v1 , vale M4, portanto é um espaço vetorial. 4. No conjunto dos pares ordenados de números reais, definirmos a operação de adição como x1 , y1 + x2 , y2 = 2x1 –2y1 , -x1+ y1, e a operação de Multiplicação como kx, y = 3ky, -kx. Com estas operações, verificar se V é espaço vetorial sobre IR. Adição A1 u+v=v+u x1,y1+x2,y2 = x2,y2+ x1,y1 2x1+-2y1 , -x1+y1 ≠ 2x2-y2 , -x2+y2 , não vale A1 A2 u+v+w = u+v+w x1,y1+[x2,y2+x3,y3] = [x1,y1+x2,y2]+x3,y3 x1,y1+[2x2+2y2 , -x2+y2] = [2x1-2y1 , -x1+y1]+x3 , y3 2x1-2y1 , -x1+y1 ≠ [2[2x1-2y1-2-x1+y1], não vale A2 A3 u+0 = u x1,y1+0,0 = x1,y1 2x1-2y1 , -x1+y1 ≠ x1,y1, não vale A3 A4 u+-u = 0 x1,y1+-x1,-y1 = 0,0 2x1-2y1 , -x1+y1 ≠ 0,0, não vale A4 Multiplicação M1 λku = λku λ[kx1,y1] = λkx1,y1 3λky1,- λkx1 = 3λky1, -λkx1, Vale M1 M2 ku+v = ku+kv K[x1,y1+x2,y2] = kx1,y1+kx2,y2 K[2x1-2y1 , -x1+y1] = 3ky1,-kx1+3ky2,-kx2 3K-x1+y1 , -k2x1-2y1 ≠ [23ky1-2-kx1 , -3ky1-kx1], não vale M2 M3 λ+ku = λu+ku λ+kx1,y1 = λx1,y1+kx1,y1 [3λ+ky1 , -λ+kx1] = 3λy1, λx1+3ky1 , -kx2 [3λ+ky1 , -λ+kx1] ≠ [23λy1-2-λx1 , -3λky1 –λx1, não vale M3 M4 1u = u 1x1,y1 = x1,y1 3y1,-x1 ≠ x1,y1 , não vale M4 Assim sendo não é um Espaço Vetorial 5. Verificar se são Sub-espaços Vetoriais os seguintes subconjuntos do Espaço Vetorial do IR3 e , em caso negativo, identificar para cada caso, qual item da definição de sub-espaço vetorial não é atendido. Para ser um sub-espaço do R3, devemos ter satisfeitas as seguintes condições i o vetor nulo ∈ IR3, ii o vetor soma u1+u2 de dois vetores de W, ∈ W, iii o vetor obtido pelo produto de um real por um vetor u, ∈ a Uku ,também ∈ W. a W={x, y, z ∈ IR3 / x = 0} i 0=0,0,0 ∈ W ii w1=x1,y1,z1∈ W w1=0,y1,z1 w2=x2,y2,z2∈ W w2=0,y2,z2 w1+w2=0,y1,z1+ 0,y2,z2 = 0, y1+y2 , z1+z2 ∈ W iii kw=k0,y,z=0,ky,kz ∈ W Portanto w é um sub-espaço de R 3 . b W={x, y, z ∈ IR3 / x ∈ Z} i 0=0,0,0 ∈ W ii w1=x1,y1,z1∈ W w1=x1,y1,z1,com x1 ∈ Z w2=x2,y2,z2∈ W w2=x2,y2,z2, com x2 ∈ Z w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2, com x1+x2∈ Z, ∈ W iii kw=kx,y,z= kx,ky,kz,não vale pois k∈R e x∈ Z, kx pode w, então w não é um sub-espaço. c W={x, y, z ∈IR3 / y é Irracional} i 0=0,0,0 w, pois y é irracional, então w não é subespaço. d W={x, y, z ∈IR3 / x −3z = 0} i 0=0,0,0 ∈ W, pois 0-30=0, 0=0 ii w1=x1,y1,z1∈ W w1= x1-3z1=0 w2=x2,y2,z2∈ W w2= x2-3z2=0 w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2 / x1+x2+-3z1+z2=0 x1+x2+-3z1-3z2=0 x1-3z1+ x2-3z2=0 0+0=0, ∈ W iii kw1=kx,y,z=kx,ky,kz / kx-3kz=0 kx-3z=0 k0=0 0=0, portanto w é um sub-espaço. e W={x, y, z ∈IR3 / a x + b y + c z = 0, com a, b, c ∈ IR} i 0=0,0,0 ∈ W, a0+b0+c0=0 0=0 ii w1=x1,y1,z1∈ W w1= ax1+by1+cz1=0 w2=x2,y2,z2∈ W w2= ax2+by2+cz2=0 w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2 / ax1+x2+by1+y2+cz1+z2 =0 ax1+ax2+by1+by2+ cz1+cz2 =0 ax1+by1+cz1+ ax2+by2+cz2=0 0=0, ∈ W iii kw1=kx,y,z=kx,ky,kz /kax+kby+kcz=0 kax+kby+kcz=0 kax+by+cz=0 k0=0 0=0, portanto w é um sub-espaço. f W={x, y, z ∈IR3 / x = 1} i 0=0,0,0 w, pois 1+0+0≠0, então w não é subespaço g W={x, y, z∈ IR3 / x2 + y + z =0} i 0=0,0,0 ∈ W, pois 02+0+0=0 ii w1=x1,y1,z1∈ W w1= x1 2 +y1+z1=0 w2=x2,y2,z2∈ W w2= x2 2 +y2+z2=0 w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2 / x1+x2 2 + y1+y2 +z1+z2=0 x1 2 +2 x2 2 + y1+y2 +z1+z2=0 x1 2 +y1+z1+ x2 2 +y2+z2+ w, portanto não é sub-espaço. h W={x, y, z ∈IR3 / x ≤ y ≤ z } i 0=0,0,0 ∈ W, pois 0 0 0 ii w1=x1,y1,z1∈ W x1 y1 z1 w2=x2,y2,z2∈ W x2 y2 z2 w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2 / x1+x2 y1+y2 z1+z2 x1+y1+ z1+y2 x2+y2+z2, ∈ W iii kw=kx,y,z=kx,ky,kz/ kx ky kz, w pois nada garante que kx ky kz, pois k é um número real qualquer, portanto w não é um sub-espaço. i W={x, y, z ∈IR3 / x + y ∈ Q} i 0=0,0,0 ∈ W, pois 0+0=0 ∈ Q ii w1=x1,y1,z1∈ W x1+y1 ∈ Q w2=x2,y2,z2∈ W x2+y2 ∈ Q w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2/ x1+x2 y1+y2 ∈ Q x1+y1 x2+y2 ∈ Q, ∈ W iii kW=kx,ky,kz/ kx+ky ∈ W kx+y ∈ W, W, pois kx não será necessariamente um número racional. 6. Verificar se é um Espaço Vetorial o conjunto dos vetores W do IR 5 tais que W= { 0, x2 , x3 , x4 , x5 , com xi ∈ IR}. O conjunto w de vetores do R 5 , é um espaço vetorial sobre IR, se estiverem definidas nesse conjunto as seguintes operações fechadas de adição de vetores e multiplicação por um número real. A1 u+v = v+u 0, x2 , x3 , x4 , x5 +0, y2 , y3 , y4 , y5 =0, y2 , y3 , y4 , y5 +0, x2 , x3 , x4 , x5 0, x2 +y2, x3+y3 , x4 + y4 , x5 +y5 = 0, y2 + x2, y3 + x3, y4 + x4, y5 + x5 vale A1 A2 u+v+w=u+v+w 0,x2,x3,x4, x5+[0,y2,y3,y4,y5+0,z2,z3,z4,z5]= [0,x2,x3,x4, x5+0,y2,y3,y4,y5]+0,z2,z3,z4,z5 0,x2,x3,x4 x5+ 0, y2 + z2, y3 + z3, y4 + z4, y5 + z5= 0, x2 +y2, x3+y3 , x4 + y4 , x5 +y5+ 0,z2,z3,z4,z5 0, x2+y2+z2, x3+y3+z3, x4+y4+z4, x5+y5+z5=0, x2+y2+z2, x3+y3+z3, x4+y4+z4, x5+y5+z5 Vale A2 A3u+0=u 0,x2,x3,x4 x5+0,0,0,0,0= 0,x2,x3,x4 x5 0, x2 +0, x3+0 , x4 + 0 , x5 +0 A4u+-u=0 0,x2,x3,x4 x5+ 0,-x2,-x3, ,-x5 =0,x2,x3,x4 x5 0,x2-x2,x3-x3,x4-x4, x5-x5=0,0,0,0,0 valeA4 M1 λku = λku λ [k0,x2,x3,x4 x5] = λk. 0,x2,x3,x4 x5 λ 0,kx2,kx3,k x4,k x5] =0, λkx2, λkx3, λkx4 ,λkx5 0, λkx2, λkx3, λkx4 ,λkx5= 0, λkx2, λkx3, λkx4 ,λkx5 M2 ku+v = ku+kv K[0, x2 , x3 , x4 , x5 +0, y2 , y3 , y4 , y5 ]=K0, x2 , x3 , x4 , x5 +k0, y2 , y3 , y4 , y5 k0, x2 +y2, x3+y3 , x4 + y4 , x5 +y5= 0, kx2, kx3,kx4 ,kx5 +0, ky2 , ky3 ,ky4 , ky5 0, kx2 +ky2, kx3+ky3 , kx4 + ky4 , kx5 +ky5= 0, kx2 +ky2, kx3+ky3 , kx4 + ky4 , kx5 +ky5 Vale M2 M3 λ+ku = λu+ku λ+k. 0,x2,x3,x4 x5 = λ0,x2,x3,x4 x5+k0,x2,x3,x4 x5 0, λ+k. x2, λ+k. x3, λ+k. x4 , λ+k. x5= λ0, λ x2, λ x3, λ x4 ,λ x5+k0, λ x2, λ x3, λ x4 ,λ x5 0, λx2+k x2, λx3+k x3, λx4+k x4, λx5+k x5= 0, λx2+k x2, λx3+k x3, λx4+k x4, λx5+k x5 vale M3 M4 1u = u 10,x2,x3,x4 x5 =0,x2,x3,x4 x5 0,1x2,1x3, 1x4, 1x5 =0,x2,x3,x4 x5 0,x2,x3,x4 x5 =0,x2,x3,x4 x5
In this very article, we are going to discuss various forms of the equation of a line. A coordinate plane consists of an infinite number of points. If we consider a point Px,y in a 2d plane and a line named it as N. Then what we will determine is that the point we consider lies on the line L or it lies above or below of the line. That’s when straight-line comes into this scenario. Here we will include the important topic related to the equation of a line in different forms. Forms of the Equation of the LineBased on the parameters known for the straight line, there are 5 forms of the equation of a line that is used to determine and represent a line's equationPoint Slope Form –This form requires a point on the line and the slope of the line. The referred point on the line is x1,y1 and the slope of the line is m. The point is a numeric value and represents the x coordinate and the y coordinate of the point and the slope of the line m is the inclination of a line with the positive m can have a positive, negative, or zero slope. Hence, the equation of a line is as follows y - y11 = m x - x11Two Point Form –This form is a further explanation of the point-sloon of a line passing through the two points - x11, y11, and x22, y22 is in this wayy−y1=y2−y1x2−x1x−x1y−y1=y2−y1x2−x1x−x1Slope Intercept Form –The slope-intercept form of the line is y = mx + c. And here, 'm' is the slope of the line and 'c' is the y-intercept of a line. This line cuts the y-axis at the point 0, c, where c is the distance of this point on the y-axis from the slope-intercept form is an important form and has great applications in the different topics of = mx + cIntercept Form –The equation of a line in this form is formed with the x-intercept a and the y-intercept b. The line cuts the x-axis at a point a, 0, and the y-axis at a point0, b, and a, b are the respective distances of these points from the origin. While these two points can be substituted in a two-point form and simplified to get this intercept form of the equation of a intercept form of the equation of the line explains the distance at which the line cuts the x-axis and the y-axis from the Form –The normal form is based on the line perpendicular to the given line, which passes through the origin, is known as the the parameters of length of the normal is 'p' and the angle made by this normal is 'θ' with the positive x-axis is useful to form the equation of a line. The normal form of the equation of the line is in this wayxcosθ + ysinθ = PDifferent Forms of the Equation of a Straight LineA. Equation of Line Parallel to the y-axisEquation of a straight line which is parallel to the y-axis at a distance of a’ then the equation of y-axis will be x=a here a’ is a coordinate in the plane.Consider this example Equation of line parallel to y-axis for coordinate 7,8 is x=8 B. Equation of Line Parallel to the x-axisEquation of a straight line if the straight line is parallel to the x-axis the equation will be y=a where a’ is an arbitrary understand one can consider this example, consider this a point 9,10 Equation of line parallel to the x-axis is x=9 C. Point- slope Form of an EquationLet a line passing through a particular point QX1, Y1 and PX, Y be any point present in the mentioned slope of a line= Y - Y1/X – X2And by the definition m is the slope,Hence, m = Y - Y1/X – X2On comparing Y – Y1 = mX – X1 is the required point-slope form equation of a line D. Equation of the Line in Two-point FormConsider an arbitrary constant Px,y present in the line L and the Line L passes through two points Ax1,y1 and Bx2,y2. We consider m’ as the slope of the line y2-y1 / x2- x1Then the equation of the line isy2-y1 = mx2-x1Substituting the value of m we gety-y1={ y2- y1/ x2-x1}x-x1Equation of the required line in two point form is y - y1= y2- y1/ x2 - x1x -x1.E. Equation of a Line in Intercept FormLet AB line cuts intercept on the x-axis at a, 0 and on the y-axis at 0, bFrom two-point form y = -b/a x – a y = b/a a – x x/ a + y/b = 1 is the required equation of line in intercept formExampleConsider finding the equation of a line which has made an intercept of 4 in x axis and has made a cut of y-axis in the graphSolutionSo, b = -3 and a = 4 x/4 + y/-3 = 1 3x – 4y = 12 hence the required equation of a line in intercept formSlope-intercepts Form of a LineConsider a line L whose slope be m which cuts an intercept on the y-axis at the distance of a’. hence the point is 0, aHence, the required equation is y – a = mx – 0 y = mx + a which is the required equation of a the equation of a line which has a slope of -1 and has an intercept of 4 units in the positive section of the m = -1 and a = -4Substituting this value in y = mx + a we get y = -x – 4 x + y + 4 = 0Solved ExamplesExampleDetermine the equation of a line which passes through the point -4, -3 and it is parallel to the m = 0, X1 = -4, Y1 = the above equation Y + 3 = 0X + 4 Y = -3 is the required equationExampleFind the equation of the line joining by the points 4,-2 and -1,3.Solution here the two given points are X1,Y1 = -1,3 and X2,Y2= 4,-2Equation of line in two point form is y – 3 = { 3 – - 2/ -1 – 4 } x+1 - x – 1 = y – 3 x + y – 2 = 0.
I have a dataframe df with XY combinations as follows > df df X1 Y1 X2 Y2 1 1 16 4 -1 2 2 15 5 -2 3 3 14 6 -3 4 4 13 7 -4 and want to reshape dfto df2by merging X1 and X2to a new variable X adding NA where Y1 or Y2 is left without value. The result would look like this > df2 X Y1 Y2 1 1 16 NA 2 2 15 NA 3 3 14 NA 4 4 13 -1 5 5 NA -2 6 6 NA -3 7 7 NA -4 What is the most efficient way to do this? asked Jan 24, 2020 at 1753 You can use dplyrfull_join df2 <- dplyrfull_joindf[, c"X1", "Y1"], df[, c"X2", "Y2"], by = c"X1" = "X2" namesdf2[1] <- "X" df2 X Y1 Y2 1 1 16 NA 2 2 15 NA 3 3 14 NA 4 4 13 -1 5 5 NA -2 6 6 NA -3 7 7 NA -4 answered Jan 24, 2020 at 1808 dave-edisondave-edison3,6467 silver badges19 bronze badges Using merge from base R mergedf[c'X1', 'Y1'], df[c'X2', 'Y2'], = 'X1', = 'X2', all = TRUE answered Jan 24, 2020 at 1825 akrunakrun871k37 gold badges535 silver badges655 bronze badges
Álgebra Exemplos Etapa 1Toque para ver mais passagens...Etapa dos dois lados da cada termo em por e para ver mais passagens...Etapa cada termo em por .Etapa o lado para ver mais passagens...Etapa dois valores negativos resulta em um valor o lado para ver mais passagens...Etapa para ver mais passagens...Etapa dois valores negativos resulta em um valor 2Reescreva na forma para ver mais passagens...Etapa forma reduzida é , em que é a inclinação e é a intersecção com o eixo 3Use a forma reduzida para encontrar a inclinação e a intersecção com o eixo para ver mais passagens...Etapa os valores de e usando a forma .Etapa inclinação da linha é o valor de , e a intersecção com o eixo y é o valor de .Inclinação intersecção com o eixo y Inclinação intersecção com o eixo y Etapa 4Qualquer reta pode ser representada graficamente usando-se dois pontos. Selecione dois valores e substitua-os na equação para encontrar os valores para ver mais passagens...Etapa a tabela dos valores e .Etapa 5Desenhe a reta no gráfico usando a inclinação e a intersecção com o eixo y, ou os intersecção com o eixo y
y y1 y2 y1 x x1 x2 x1